On the provision of SaaS-level quality of service within heterogeneous private clouds


Abstract:

The efficient utilization of computing resources, consisting of multi-core CPUs, GPUs and FPGAs, has become an interesting research problem for achieving high performance on heterogeneous Cloud computing platforms. In particular, FPGA accelerators can provide significant business value in Cloud environments due to its great computing capacity with predictable latency and low power consumption. In this paper, a Software as a Service (SaaS) model is enhanced with Quality of Service (QoS) support, harnessing such heterogeneous hardware architecture (composed of conventional CPUs plus FPGAs as accelerator). More precisely, the proposal takes into account timing user requirements to manage virtual resources. Hence, novel heterogeneous-aware resource allocation and scheduling algorithms are presented, which can be used both on-demand and in-advance. A lineal regression model that predicts the cost of the requested service is combined with a simple heuristic algorithm in order to allocate different types of Virtual Machines (VMs). Moreover, the framework provides the service efficiently by using an adapted scheduling algorithm that combines CPUs and accelerator resources.

Año de publicación:

2014

Keywords:

  • Quality of service
  • Heterogeneous resources
  • CLOUD COMPUTING
  • FPGAs
  • SaaS

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Computación en la nube
  • Software

Áreas temáticas de Dewey:

  • Ciencias de la computación
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA