On the relationship between dimensionality reduction and spectral clustering from a kernel viewpoint


Abstract:

This paper presents the development of a unified view of spectral clustering and unsupervised dimensionality reduction approaches within a generalized kernel framework. To do so, the authors propose a multipurpose latent variable model in terms of a high-dimensional representation of the input data matrix, which is incorporated into a least-squares support vector machine to yield a generalized optimization problem. After solving it via a primal-dual procedure, the final model results in a versatile projected matrix able to represent data in a low-dimensional space, as well as to provide information about clusters. Specifically, our formulation yields solutions for kernel spectral clustering and weighted-kernel principal component analysis.

Año de publicación:

2016

Keywords:

  • Kernel PCA
  • Dimensionality reduction
  • Generalized kernel formulation
  • Spectral clustering
  • Support Vector Machine

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Optimización matemática
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación