On the relationship between dimensionality reduction and spectral clustering from a kernel viewpoint
Abstract:
This paper presents the development of a unified view of spectral clustering and unsupervised dimensionality reduction approaches within a generalized kernel framework. To do so, the authors propose a multipurpose latent variable model in terms of a high-dimensional representation of the input data matrix, which is incorporated into a least-squares support vector machine to yield a generalized optimization problem. After solving it via a primal-dual procedure, the final model results in a versatile projected matrix able to represent data in a low-dimensional space, as well as to provide information about clusters. Specifically, our formulation yields solutions for kernel spectral clustering and weighted-kernel principal component analysis.
Año de publicación:
2016
Keywords:
- Kernel PCA
- Dimensionality reduction
- Generalized kernel formulation
- Spectral clustering
- Support Vector Machine
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Optimización matemática
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación