On the solvability of the jump problem in clifford analysis
Abstract:
Let Ω be a bounded open and oriented connected subset of ℝn which has a compact topological boundary Γ, let C be the Dirac operator in ℝn, and let ℝ0,n be the Clifford algebra constructed over the quadratic space ℝn. An ℝ0,n-valued smooth function f: Ω → ℝ0,n in Ω is called monogenic in Ω if Df = 0 in Ω. The aim of this paper is to present the most general condition on Γ obtained so far for which a Hölder continuous function f can be decomposed as F+ - F- = f on Γ, where the components F ± are extendable to monogenic functions in Ω± with Ω+:= Ω, and Ω-:= ℝn \ (Ω ∪ Γ), respectively. © 2013 Springer Science+Business Media New York.
Año de publicación:
2013
Keywords:
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Modelo matemático
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Álgebra