On the spectral clustering for dynamic data


Abstract:

Spectral clustering has shown to be a powerful technique for grouping and/or rank data as well as a proper alternative for unlabeled problems. Particularly, it is a suitable alternative when dealing with pattern recognition problems involving highly hardly separable classes. Due to its versatility, applicability and feasibility, this clustering technique results appealing for many applications. Nevertheless, conventional spectral clustering approaches lack the ability to process dynamic or time-varying data. Within a spectral framework, this work presents an overview of clustering techniques as well as their extensions to dynamic data analysis.

Año de publicación:

2015

Keywords:

  • Dynamic data
  • Kernels
  • Spectral clustering

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Simulación por computadora
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales