On the structure of graph edge designs that optimize the algebraic connectivity
Abstract:
We take a structural approach to the problem of designing the edge weights in an undirected graph subject to an upper bound on their total, so as to maximize the algebraic connectivity. Specifically, we first characterize the eigenvector(s) associated with the algebraic connectivity at the optimum, using optimization machinery together with eigenvalue sensitivity notions. Using these characterizations, we fully address optimal design in tree graphs that is quadratic in the number of vertices, and also obtain a suite of results concerning the topological and eigen-structure of optimal designs for bipartite and general graphs. © 2008 IEEE.
Año de publicación:
2008
Keywords:
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
- Optimización matemática
Áreas temáticas de Dewey:
- Ciencias de la computación
- Física aplicada
- Principios generales de matemáticas
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 4: Educación de calidad