On the uncertainty modelling for linear continuous-time systems utilising sampled data and Gaussian mixture models


Abstract:

In this paper a Maximum Likelihood estimation algorithm for model error modelling in a continuous-time system is developed utilising sampled data and a Stochastic Embedding approach. Orthonormal basis functions are used to model both the continuous-time nominal model and the error-model. The stochastic properties of the error-model distribution are defined by using a Gaussian mixture model. For the estimation of the nominal model and the error-model distribution we develop a technique based on the Expectation-Maximization algorithm using sampled data from independent experiments. The benefits of our proposal are illustrated via numerical simulations.

Año de publicación:

2021

Keywords:

  • Maximum likelihood
  • Stochastic embedding
  • Gaussian Mixture Model
  • continuous-time model
  • Discrete-time model

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación