On the value of filter feature selection techniques in homogeneous ensembles effort estimation


Abstract:

Software development effort estimation (SDEE) remains as the principal activity in software project management planning. Over the past four decades, several methods have been proposed to estimate the effort required to develop a software system, including more recently machine learning (ML) techniques. Because ML performance accuracy depends on the features that feed the ML technique, selecting the appropriate features in the preprocessing data step is important. This paper investigates three filter feature selection techniques to check the pbkp_redictive capability of four single ML techniques: K-nearest neighbor, support vector regression, multilayer perceptron, and decision trees and their homogeneous ensembles over six well-known datasets. Furthermore, the single and ensembles techniques were optimized using the grid search optimization method. The results suggest that the three filter feature selection techniques investigated improve the reasonability and the accuracy performance of the four single techniques. Moreover, the homogeneous ensembles are statistically more accurate than the single techniques. Finally, adopting a random process (i.e., random subspace method) to select the inputs feature for ML technique is not always effective to generate an accurate homogeneous ensemble.

Año de publicación:

2021

Keywords:

  • ensemble effort estimation
  • filter
  • feature selection
  • Software development effort estimation
  • Machine learning

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Software

Áreas temáticas:

  • Ciencias de la computación