Optical trapping of carbon nanotubes and graphene
Abstract:
We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fuctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene fakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory. © 2011 by the Author(s); licensee Accademia Peloritana dei Pericolanti, Messina, Italy.
Año de publicación:
2011
Keywords:
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencia de materiales
- Nanostructura
- Ciencia de materiales
Áreas temáticas:
- Física
- Física aplicada