Optimal design of a fuzzy system with a real-coded genetic algorithm for diabetes classification
Abstract:
In this work a real-coded genetic algorithm for parameter optimization of the membership functions of the inputs and the outputs of a fuzzy inference system applied to diabetes classification is proposed. The main goal of this article is to show the advantages that parameter optimization of all the inputs and output using a real-coded genetic algorithm. The dataset used in this work to validate the approach is the PIMA Indian Diabetes dataset, where we have selected five attributes to perform the parameter optimization. Being the Diabetes a disease that has been affecting many lives in the world, for this reason, this work seeks to find a better classification.
Año de publicación:
2021
Keywords:
Fuente:
google
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
- Diabetes
Áreas temáticas:
- Métodos informáticos especiales
- Fisiología humana