Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve
Abstract:
This paper presents a methodology for jointly optimizing the sizing and power management of PV household-prosumers, namely, photovoltaic (PV) power, electric vehicle charging load (EVCL), household consumption load (HCL), battery bank (BB), and power converters. The optimization includes PV self-consumption enhancement and frequency containment reserve (FCR). This innovative model uses an annual techno-economic assessment to calculate the total costs and revenue by means of the teaching-learning-based optimization (TLBO) algorithm. The assessment of BB aging takes into account the charge/discharge power as well as the depth of discharge (DOD). This methodology is applied to Spanish PV household-prosumers. Results are obtained for scenarios involving PV, EV, and BB. Moreover, the PV household-prosumer approximated the smart user concept by providing FCR service. The scenarios envisaged examined potential revenues based on markets (day-ahead and FCR market) and their influence on profitability. The results of this study confirmed that BB is a cost-effective way of enhancing PV self-consumption by decreasing the levelized cost of electricity (LCOE). In fact, when FCR provision was added, there was a significant increase in the total revenue with a relatively low impact on BB aging.
Año de publicación:
2020
Keywords:
- PV power systems
- Power management strategy
- Batteries
- Frequency containment reserve
- electric vehicle
- lifetime
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Energía renovable
- Energía renovable
- Energía
Áreas temáticas:
- Física aplicada
- Economía de la tierra y la energía