Optimization-based strategies for the operation of low-density polyethylene tubular reactors: Moving horizon estimation
Abstract:
We present a moving horizon estimation (MHE) application for multi-zone low-density (LDPE) polyethylene tubular reactors. The strategy incorporates a first-principles dynamic model comprised of large sets of nonlinear partial, differential and algebraic equations (PDAEs). It was found that limited temperature measurements distributed along the reactor are sufficient to infer all the model states in space and time and to track uncertain time-varying phenomena such as fouling. A full discretization strategy and a state-of-the-art nonlinear programming (NLP) solver are used to enable the computational feasibility of the approach. It is demonstrated that the MHE estimator exhibits fast performance and is well suited for applications of industrial interest.
Año de publicación:
2009
Keywords:
- Large-scale
- Discretization
- Distributed reactors
- nonlinear programming
- UNCERTAINTY
- Moving horizon estimation
- LDPE
- partial differential equations
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Ingeniería química
- Optimización matemática
Áreas temáticas:
- Tecnología de productos químicos industriales
- Física aplicada
- Ingeniería química