Orthogonal neural network based predistortion for OFDM systems


Abstract:

This paper proposes a predistortion scheme based on an orthogonal hidden layer feedforward neural network for reducing nonlinear distortion introduced by a traveling wave tube amplifier (TWTA) over orthogonal frequency division multiplexing (OFDM) signals. In predistorter, the inputs weight are fixed and based on this the output weights are analytically determined. Computer simulation results confirm that once the 16QAM-OFDM signals are predistorted and amplified at an input back-off level of 0 dB there is a bit error rate performance very close to the ideal case of linear amplification. © 2007 IEEE.

Año de publicación:

2007

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Red neuronal artificial
    • Ciencias de la computación

    Áreas temáticas de Dewey:

    • Ciencias de la computación
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA