A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution
Abstract:
This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online.
Año de publicación:
2022
Keywords:
- Attention module
- Unsupervised super-resolution
- thermal images
- Thermal image super-resolution
- Semiregistered thermal images
Fuente:
scopus
googleTipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas de Dewey:
- Física aplicada
- Métodos informáticos especiales
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 3: Salud y bienestar