Parameter space study of optimal scale-dependent weights in TV image denoising


Abstract:

We investigate the choice of finite-dimensional parameter spaces within a bilevel optimization framework for selecting scale-dependent weights in total variation image denoising with non-uniform noise. Due to the pointwise box constraints on the parameter function, we prove existence of Lagrange multipliers in low regularity spaces, and derive a first-order optimality system. To cope with the difficulties related to the lack of regularity, a Moreau-Yosida regularization is introduced and convergence of the regularized optimal parameters towards the optimal weight for the original problem is verified. For each regularized bilevel problem a second-order quasi-Newton algorithm is proposed, together with a semismooth Newton scheme for solving the lower-level problem. Finally, several numerical tests are carried out to compare the different parameter space choices and draw some conclusions.

Año de publicación:

2022

Keywords:

  • Bilevel optimization
  • Total variation image denoising
  • non-uniform noise
  • spatially dependent parameter

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Optimización matemática

Áreas temáticas:

  • Métodos informáticos especiales