Path integral computation of quantum free energy differences due to alchemical transformations involving mass and potential
Abstract:
Thermodynamic integration, perturbation theory, and λ-dynamics methods were applied to path integral molecular dynamics calculations to investigate free energy differences due to "alchemical" transformations. Several estimators were formulated to compute free energy differences in solvable model systems undergoing changes in mass and/or potential. Linear and nonlinear alchemical interpolations were used for the thermodynamic integration. We find improved convergence for the virial estimators, as well as for the thermodynamic integration over nonlinear interpolation paths. Numerical results for the perturbative treatment of changes in mass and electric field strength in model systems are presented. We used thermodynamic integration in ab initio path integral molecular dynamics to compute the quantum free energy difference of the isotope transformation in the Zundel cation. The performance of different free energy methods is discussed. © 2011 American Chemical Society.
Año de publicación:
2011
Keywords:
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Mecánica cuántica
- Química teórica
Áreas temáticas:
- Física
- Física moderna
- Química física