Pedestrian detection at night based on faster R-CNN and far infrared images


Abstract:

This paper presents a pedestrian detection system focused on night time conditions for vehicular safety applications. For this purpose we analyze the performance of the recent deep learning detector Faster R-CNN [1] with infrared images for detecting pedestrians at night. We discovered that Faster R-CNN has drawbacks when detecting pedestrians that are far away. For this reason, we present a new Faster R-CNN architecture focused on multi scale detection, through two Region Proposal Networks RPNCD and RPNLD. Our architecture has been compared with the best models such as VGG-16 and Resnet 101. The experimental results have been development on the CVC-09 dataset [2]. These show an improvement when detecting far away pedestrians, with a 37.73% miss rate on 10-2 FPPI and the mAP is 85%.

Año de publicación:

2018

Keywords:

  • traffic accidents
  • Faster R-CNN
  • Multiple-scale
  • RPN
  • Infrared
  • night
  • pedestrian

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Ciencias de la computación
  • Simulación por computadora

Áreas temáticas:

  • Ciencias de la computación
  • Derecho privado
  • Otras ramas de la ingeniería