A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces


Abstract:

We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solution of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.

Año de publicación:

2017

Keywords:

  • Approximation schemes
  • feedback control
  • Stochastic linear quadratic regulator problems
  • Riccati equations

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Control óptimo
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Análisis numérico
  • Probabilidades y matemática aplicada