Performance Analysis of Matrix Multiplication for Deep Learning on the Edge
Abstract:
The devices designed for the Internet-of-Things encompass a large variety of distinct processor architectures, forming a highly heterogeneous zoo. In order to tackle this, we employ a simulator to estimate the performance of the matrix-matrix multiplication (gemm) kernel on processors designed to operate at the edge. Our simulator adheres to the modern implementations of gemm, advocated by GotoBLAS2, BLIS, OpenBLAS, etc., to carefully account for the amount of data transfers across the memory hierarchy of different algorithmic variants of the kernel. A small collection of experiments provide the necessary data to calibrate the simulator and deliver highly accurate estimations of the execution time for a given processor architecture.
Año de publicación:
2022
Keywords:
- IoT processors
- Performance Analysis
- Matrix multiplication
- high performance
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación