Performance of the estimators weighted least square, extended kalman filter, and the particle filter in the dynamic estimation of state variables of electrical power systems


Abstract:

The state estimation (SE) is a crucial subject in the analysis and management of electrical power systems (EPS). SE allows to determine and alert about unacceptable voltage and power flow values, network losses and network topology changes. Also, SE permits to know the available power and power flow in and amongst buses. This article provides a referential study for the performance of the Weighted Least Square (WLS), Extended Kalman Filter (EKF) and Particle Filter (PF) for comparisons between these techniques in the Dynamic State Estimation (DSE) of EPS. In the Extended Kalman Filter (EKF) technique, the Holt method is used to linearize the process model. The performance of the methods is analyzed through the comparison of the estimation results considering the error indexes (ϵ). In this work, an IEEE 14-bus test case is utilized. The results show that the PF method has better accuracy than the WLS and EKF methods.

Año de publicación:

2019

Keywords:

  • extended Kalman filter
  • holt method
  • Index of error
  • Dynamic Power System State Estimation
  • weight Least Square
  • particle Filter

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Potencia eléctrica
  • Teoría de control

Áreas temáticas:

  • Física aplicada
  • Métodos informáticos especiales