Personalised, serendipitous and diverse linked data resource recommendations
Abstract:
Due to the huge and diverse amount of information, the actual access to a piece of information in the Linked Open Data (LOD) cloud still demands significant amount of effort. To overcome this problem, number of Linked Data based recommender systems have been developed. However, they have been primarily developed for a particular domain, they require human intervention in the dataset pre-processing step, and they can be hardly adopted to new datasets. In this paper, we present our method for personalised access to Linked Data, in particular focusing on its applicability and its salient features.
Año de publicación:
2015
Keywords:
- Similarity metric
- Semantic distance
- Linked data
- personalisation
- Recommendation
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Minería de datos
- Ciencias de la computación
Áreas temáticas:
- Funcionamiento de bibliotecas y archivos