Pixel features for self-organizing map based detection of foreground objects in dynamic environments


Abstract:

Among current foreground detection algorithms for video sequences, methods based on self-organizing maps are obtaining a greater relevance. In this work we propose a probabilistic self-organising map based model, which uses a uniform distribution to represent the foreground. A suitable set of characteristic pixel features is chosen to train the probabilistic model. Our approach has been compared to some competing methods on a test set of benchmark videos, with favorable results.

Año de publicación:

2017

Keywords:

  • background features
  • background modeling
  • Probabilistic self-organising maps
  • foreground detection

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Simulación por computadora
  • Simulación por computadora

Áreas temáticas:

  • Métodos informáticos especiales