Pixel features for self-organizing map based detection of foreground objects in dynamic environments
Abstract:
Among current foreground detection algorithms for video sequences, methods based on self-organizing maps are obtaining a greater relevance. In this work we propose a probabilistic self-organising map based model, which uses a uniform distribution to represent the foreground. A suitable set of characteristic pixel features is chosen to train the probabilistic model. Our approach has been compared to some competing methods on a test set of benchmark videos, with favorable results.
Año de publicación:
2017
Keywords:
- background features
- background modeling
- Probabilistic self-organising maps
- foreground detection
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Simulación por computadora
- Simulación por computadora
Áreas temáticas:
- Métodos informáticos especiales