A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids


Abstract:

This paper reviews the current techniques used in energy management systems to optimize energy schedules into microgrids, accounting for uncertainties for various time frames (day-ahead and real-time operations). The current uncertainties affecting applications, including residential, commercial, virtual power plants, electric mobility, and multi-carrier microgrids, are the main subjects of this article. We outline the most recent modeling approaches to describe the uncertainties associated with various microgrid applications, such as pbkp_rediction errors, load consumption, degradation, and state of health. The modeling approaches discussed in this article are probabilistic, possibilistic, information gap theory, and deterministic. Then, the paper presents and compares the current optimization techniques, considering the uncertainties in their problem formulations, such as stochastic, robust, fuzzy optimization, information gap theory, model pbkp_redictive control, multiparametric programming, and machine learning techniques. The optimization techniques depend on the model used, the data available, the specific application, the real-time platform, and the optimization time. We hope to guide researchers to identify the best optimization technique for energy scheduling, considering the specific uncertainty and application. Finally, the most challenging issues to enhance microgrid operations, despite uncertainties by considering new trends, are discussed.

Año de publicación:

2022

Keywords:

  • Energy Management System
  • Microgrids
  • Modeling
  • uncertainties
  • Optimization

Fuente:

scopusscopus

Tipo de documento:

Review

Estado:

Acceso abierto

Áreas de conocimiento:

  • Energía
  • Energía renovable

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería