Análisis de técnicas de aprendizaje automático para la clasificación de palabras en un curso virtual de la plataforma MOODLE
Abstract:
En el presente trabajo de titulación se evaluaron dos técnicas de aprendizaje automático (AA): Redes Neuronales y Redes Bayesianas, para ello se utilizaron dos dataset y dos herramientas AA, con mensajes reales extraídos de la plataforma MOODLE de la Universidad Técnica Particular de Loja. Específicamente de un seminario con contenido de Desarrollo Web, y de una clase de Estructura de Datos, ambos de la modalidad de estudios a distancia. Para la elaboración de las pruebas y el cumplimiento de los objetivos, se usó “Weka” en vista de que permite utilizar un mayor número de algoritmos y una mejor visualización de los resultados. Se aplicaron dos tipos de validación que son Percentage Split y Cross-validation en cada uno de los algoritmos de dichas técnicas. De esta manera se comparó los resultados; por lo que se seleccionó Redes Bayesianas por obtener mayor porcentaje en las instancias correctamente clasificadas, mayor número de precisión y cobertura. El algoritmo seleccionado fue “Multinominal Naive Bayes” y validación por “Percentage Split” por obtener 88,97% de instancias correctamente clasificadas y 0,891 de precisión con el dataset en español, también obtuvo 80% de instancias correctamente clasificadas y 0,8 de precisión con el dataset en inglés.
Año de publicación:
2016
Keywords:
- REDES BAYESIANAS
- Redes Neuronales
- Magíster en Gestión y Desarrollo Social - Tesis y disertaciones académicas
- MOODLE – Plataforma
- Aprendizaje automático – Técnicas
Fuente:
Tipo de documento:
Bachelor Thesis
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Sistemas