Poincaré plot features from vibration signal for gearbox fault diagnosis
Abstract:
This paper describes a method for fault diagnosis in gearboxes using features extracted from the Poincare plot of the vibration signal. Several features describing the geometrical shape of the Poincare plot are calculated and three of these features are selected for performing the classification of 10 types of faults recorded in the gearbox vibration signal dataset. A multi-class Error-Correcting Output Code Support Vector Machine is trained for performing the classification of faults. The cross-validation performed show that the highest accuracy attained is 95.3% when signals recorded using the load L1 are considered.
Año de publicación:
2017
Keywords:
- Multi-class Support Vector Machines
- Gearbox faults classification
- Poincare plots
- Rotatory machines
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ingeniería mecánica
- Aprendizaje automático
Áreas temáticas de Dewey:
- Física aplicada
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 12: Producción y consumo responsables
- ODS 8: Trabajo decente y crecimiento económico