Polaroid type operators under perturbations
Abstract:
A bounded operator T defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. The "polaroid" condition is related to the conditions of being left polaroid, right polaroid, or a-polaroid. In this paper we explore all these conditions under commuting perturbations K. As a consequence, we give a general framework from which we obtain, and also extend, recent results concerning Weyl type theorems (generalized or not) for T + K, where K is an algebraic or a quasinilpotent operator commuting with T. © Instytut Matematyczny PAN, 2013.
Año de publicación:
2013
Keywords:
- Weyl type theorems
- Polaroid type operators
- Localized SVEP
Fuente:
scopus
google
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación
- Estadísticas generales de Europa
- Física