Position-momentum Heisenberg uncertainty in Gaussian enfoldments of Euclidian space
Abstract:
Gaussian enfoldments have been derived from the form of general Gaussian functions centered at arbitrary positions in Euclidian space. Every point of Euclidian space acts in this way as the center of a Gaussian function defined in position space. Using the position-momentum Fourier transform in the quantum mechanical way and applied into the position functions of the Gaussian Euclidian enfoldment, the transform result provides a unique momentum Gaussian function, centered at the origin. In this way, the Euclidian enfoldment disappears in momentum space. Further analysis of the position-momentum relationship indicates that the product of the variances of the enfoldment in position and the corresponding momentum Fourier transform produces some kind of Heisenberg's uncertainty relation. © 2012 Springer Science+Business Media New York.
Año de publicación:
2013
Keywords:
- Gaussian functions
- Gaussian enfoldments in Euclidian spaces
- Heisenberg position-momentum uncertainty
- Density functions
- Position-momentum Fourier transform
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Mecánica cuántica
- Mecánica cuántica
- Modelo matemático
Áreas temáticas de Dewey:
- Física
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 4: Educación de calidad