Power conversion system for high altitude wind power generation with medium voltage AC transmission


Abstract:

High Altitude Wind Power (HAWP) generating system provides clean energy at low cost and high capacity factor due to reduced size of the turbine and high speed streamlined wind at high altitude. An air-borne wind turbine (AWT) at high altitude extracts kinetic energy from wind using buoyancy provided by the blimp/aerostat. The generated electrical power is then transmitted to the ground based station (without any power conditioning) using the transmission lines (tether). The power conversion system (PCS) for harnessing HAWP is proposed in this paper. The proposed PCS consists of a three-level neutral point clamped (NPC) rectifier, a three-level NPC DC-DC converter followed by a two-level inverter. Modelling, design and control of the PCS are presented and discussed. The PCS provides generation side maximum power-point tracking (MPPT) using sensorless optimal torque control technique. The DC-DC converter provides electrical isolation as well as voltage step-down functions. A modified proportional resonant (PR) control which can selectively eliminate lower order current harmonics of the grid-connected inverter is also presented. The proposed control scheme of the PCS is evaluated through simulation studies using software programs like PSIM and MATLAB. A scaled-down 1 kW laboratory prototype of the complete PCS is designed, built and tested. The experimental test results obtained validate the proposed control scheme for efficient power generation from high altitude wind and interface to the grid/load.

Año de publicación:

2016

Keywords:

  • Permanent magnet synchronous generator (PMSG)
  • High Altitude Wind Power (HAWP)
  • Maximum power-point tracking
  • Three-level NPC rectifier
  • Power conversion system
  • inverter
  • Resonant control

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Energía
  • Energía
  • Energía

Áreas temáticas:

  • Física aplicada