Pbkp_redicting the Ultimate Tensile Strength of AISI 1045 steel and 2017-T4 aluminum alloy joints in a laser-assisted rotary friction welding process using Machine learning: a …
Abstract:
Welding metal alloys with dissimilar melting points makes conventional welding processes not feasible to be used. Friction welding, on the other hand, has proven to be a promising technology. However, obtaining the welded joint’s mechanical properties with characteristics similar to the base materials remains a challenge. In the development of this work, several of the machine learning (ML) regressors (e.g., Gaussian process, decision tree, random forest, support vector machines, gradient boosting, and multi-layer perceptron) were evaluated for the pbkp_rediction of the ultimate tensile strength (UTS) in joints of AISI 1045 steel and 2017-T4 aluminum alloy produced by rotary friction welding with laser assistance. A mixed design of experiments was employed to assess the effect of the rotation speed, friction pressure, and laser power over the UTS. Furthermore, the response surface methodology (RSM) was employed …
Año de publicación:
2021
Keywords:
Fuente:
![google](/_next/image?url=%2Fgoogle.png&w=128&q=75)
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Ingeniería mecánica
- Ciencia de materiales
- Aprendizaje automático
Áreas temáticas:
- Metalurgia y productos metálicos primarios
- Fabricación
- Otras ramas de la ingeniería