Pbkp_rediction of the Hildebrand parameter of various solvents using linear and nonlinear approaches


Abstract:

The Hildebrand solubility parameter (δ) provides a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility. In this work, a small number of physicochemical variables were appropriately selected from a pool of Dragon descriptors and correlated with the Hildebrand thermodynamic parameter of compounds previously studied as organic solvents of buckminsterfullerene (C60), using multiple linear regression and support vector machines. Models were validated using an external set of compounds and the statistical parameters obtained revealed the high pbkp_rediction performance of all models, especially the one based on nonlinear regression. These findings provide useful information about which solvent and corresponding characteristics are important for solubility studies of e.g. this increasingly useful carbon allotrope. © 2010 Elsevier B.V. All rights reserved.

Año de publicación:

2010

Keywords:

  • Fullerene
  • Hildebrand parameter
  • artificial neural networks
  • QSPR

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Química general
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación
  • Química física
  • Dirección general