Presentation skills estimation based on video and kinect data analysis
Abstract:
This paper identifies, by means of video and Kinect data, a set of predictors that estimate the presentation skills of 448 individual students. Two evaluation criteria were predicted: eye contact and posture and body language. Machine-learning evaluations resulted in models that predicted the perfor- mance level (good or poor) of the presenters with 68% and 63% of correctly classified instances, for eye contact and postures and body language criteria, respectively. Furthermore, the results suggest that certain features, such as arms movement and smoothness, provide high significance on predicting the level of development for presentation skills. The paper finishes with conclusions and related ideas for future work.
Año de publicación:
2014
Keywords:
- Video features
- Presentation skills
- Multimodal
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
- Análisis de datos
Áreas temáticas de Dewey:
- Juegos y diversiones de interior
- Métodos informáticos especiales
- Escuelas y sus actividades; educación especial

Objetivos de Desarrollo Sostenible:
- ODS 4: Educación de calidad
- ODS 17: Alianzas para lograr los objetivos
- ODS 8: Trabajo decente y crecimiento económico
