Probability-based dynamic time warping for gesture recognition on RGB-D data


Abstract:

Dynamic Time Warping (DTW) is commonly used in gesture recognition tasks in order to tackle the temporal length variability of gestures. In the DTW framework, a set of gesture patterns are compared one by one to a maybe infinite test sequence, and a query gesture category is recognized if a warping cost below a certain threshold is found within the test sequence. Nevertheless, either taking one single sample per gesture category or a set of isolated samples may not encode the variability of such gesture category. In this paper, a probability-based DTW for gesture recognition is proposed. Different samples of the same gesture pattern obtained from RGB-Depth data are used to build a Gaussian-based probabilistic model of the gesture. Finally, the cost of DTW has been adapted accordingly to the new model. The proposed approach is tested in a challenging scenario, showing better performance of the probability-based DTW in comparison to state-of-the-art approaches for gesture recognition on RGB-D data. © 2013 Springer-Verlag.

Año de publicación:

2013

Keywords:

  • Gesture recognition
  • Dynamic time warping
  • Statistical Pattern Recognition
  • Depth maps

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Ciencias de la computación