A Virtual Listener For HRTF-Based Sound Source Localization Using Support Vector Regression
Abstract:
In perceptual-based techniques for individualization of head-related transfer functions (HRTFs), subjects tune some parameters for several target directions until they achieve an acceptable spatial accuracy. However, this procedure might be time-consuming depending on the ability of the listener, and the number of parameters and target directions. This makes desirable a way to estimate empirically the localization accuracy before tuning sessions. To tackle this problem, we propose a virtual listener based on Support Vector Regression (SVR) to substitute the human listener in such sessions. We show that, using a small training set obtained by sampling uniformly a subject's HRTFs across directions, our virtual listener achieves human-level localization accuracy. Moreover, simulations show that the virtual listener performance is in accordance with human perception for sound sources with different frequency …
Año de publicación:
2018
Keywords:
Fuente:
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación
- Métodos informáticos especiales
- Física aplicada