Protein fold families pbkp_rediction based on graph representations and machine learning methods


Abstract:

Pbkp_rediction of protein fold families remains an existing challenge in molecular biology and bioinformatics, mainly because proteins form a broad range of complex three-dimensional configurations and because the number of proteins registered in datasets has dramatically increased in the recent years. Computational alternatives must then be designed for substituting experimental methods. However, implementations of computational methods have found a problem to extract features that involve the physical-chemical attributes and spatial features of the protein to improve the accuracy in pbkp_redictions. In this paper, we propose the use of graph theory for representing position of amino acids of the protein as graph nodes, and graph edges connect amino acids that are close to each other under a given threshold. In this way we can get very descriptive features related to spatial and physical-chemical properties of the proteins to describe their three-dimensional structure and so pbkp_redict the protein fold families with a good accuracy.

Año de publicación:

2016

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Ciencias de la computación

    Áreas temáticas:

    • Ciencias de la computación