QOSCOMM: A data flow allocation strategy among sdn-based data centers for iot big data analytics
Abstract:
When Internet of Things (IoT) big data analytics (BDA) require to transfer data streams among software defined network (SDN)-based distributed data centers, the data flow forwarding in the communication network is typically done by an SDN controller using a traditional shortest path algorithm or just considering bandwidth requirements by the applications. In BDA, this scheme could affect their performance resulting in a longer job completion time because additional metrics were not considered, such as end-to-end delay, jitter, and packet loss rate in the data transfer path. These metrics are quality of service (QoS) parameters in the communication network. This research proposes a solution called QoSComm, an SDN strategy to allocate QoS-based data flows for BDA running across distributed data centers to minimize their job completion time. QoSComm operates in two phases: (i) based on the current communication network conditions, it calculates the feasible paths for each data center using a multi-objective optimization method; (ii) it distributes the resultant paths among data centers configuring their openflow Switches (OFS) dynamically. Simulation results show that QoSComm can improve BDA job completion time by an average of 18%.
Año de publicación:
2020
Keywords:
- qos
- IoT Big Data Analytics
- SDN
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Computación en la nube
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación
- Funcionamiento de bibliotecas y archivos
- Métodos informáticos especiales