Quadratic Model Pbkp_redictive Control Including Input Cardinality Constraints
Abstract:
This note addresses the problem of feedback control with a constrained number of active inputs. This problem is known as sparse control. Specifically, we describe a novel quadratic model pbkp_redictive control strategy that guarantees sparsity by bounding directly the l0-norm of the control input vector at each control horizon instant. Besides this sparsity constraint, bounded constraints are also imposed on both control input and system state. Under this scenario, we provide sufficient conditions for guaranteeing practical stability of the closed-loop. We transform the combinatorial optimization problem into an equivalent optimization problem that does not consider relaxation in the cardinality constraints. The equivalent optimization problem can be solved utilizing standard nonlinear programming toolboxes that provides the input control sequence corresponding to the global optimum.
Año de publicación:
2017
Keywords:
- practical stability
- Constrained control
- l optimization 0
- model pbkp_redictive control (MPC)
- sparse control
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Sistema de control
- Control óptimo
Áreas temáticas:
- Principios generales de matemáticas
- Física aplicada
- Ciencias de la computación