Quantum similarity and QSPR in Euclidean-, and Minkowskian–Banach spaces
Abstract:
This paper describes first how Euclidian- and Minkowskian–Banach spaces are related via the definition of a metric or signature vector. Also, it is discussed later on how these spaces can be generated using homothecies of the unit sphere or shell. Such possibility allows for proposing a process aiming at the dimension condensation in such spaces. The condensation of dimensions permits the account of the incompleteness of classical QSPR procedures, independently of whether the algorithm used is statistical bound or AI-neural network related. Next, a quantum QSPR framework within Minkowskian vector spaces is discussed. Then, a well-defined set of general isometric vectors is proposed, and connected to the set of molecular density functions generating the quantum similarity metric matrix. A convenient quantum QSPR algorithm emerges from this Minkowskian mathematical structure and isometry.
Año de publicación:
2023
Keywords:
- Minkowskian isometric vectors
- Classical QSPR
- Metric or signature vector
- Dimension condensation
- Minkowskian similarity matrices
- Vector space generation via the unit shell
- Euclidian- and Minkowskian–Banach spaces
- Quantum QSPR algorithm
Fuente:

Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Mecánica cuántica
- Modelo matemático
- Relación cuantitativa estructura-actividad
Áreas temáticas de Dewey:
- Física
- Química física
- Matemáticas