Quasi-Monte Carlo methods for lattice systems: A first look


Abstract:

We investigate the applicability of quasi-Monte Carlo methods to Euclidean lattice systems for quantum mechanics in order to improve the asymptotic error behavior of observables for such theories. In most cases the error of an observable calculated by averaging over random observations generated from an ordinary Markov chain Monte Carlo simulation behaves like N-1/2, where N is the number of observations. By means of quasi-Monte Carlo methods it is possible to improve this behavior for certain problems to N-1, or even further if the problems are regular enough. We adapted and applied this approach to simple systems like the quantum harmonic and anharmonic oscillator and verified an improved error scaling. © 2013 Elsevier B.V. All rights reserved.

Año de publicación:

2014

Keywords:

  • quantum mechanics
  • Lattice field theory
  • Reweighting
  • Anharmonic oscillator
  • Path integral
  • Error scaling
  • Quasi-Monte Carlo

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Método de Monte Carlo
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Matemáticas
  • Probabilidades y matemática aplicada