Quaternionic-valued Gravitation in 8D, Grand Unification and Finsler Geometry


Abstract:

A unification model of 4D gravity and SU(3)×SU(2)×U(1) Yang-Mills theory is presented. It is obtained from a Kaluza-Klein compactification of 8Dquaternionic gravity on an internal CP 2=SU(3)/U(2) symmetric space. We proceed to explore the nonlinear connection A μa(x, y) formalism used in Finsler geometry to show how ordinary gravity in D=4+2 dimensions has enough degrees of freedom to encode a 4D gravitational and SU(5) Yang-Mills theory. This occurs when the internal two-dim space is a sphere S 2. This is an appealing result because SU(5) is one of the candidate GUT groups. We conclude by discussing how the nonlinear connection formalism of Finsler geometry provides an infinite hierarchical extension of the Standard Model within a six dimensional gravitational theory due to the embedding of SU(3)×SU(2)×U(1)⊂SU(5)⊂SU(∞). © 2012 Springer Science+Business Media, LLC.

Año de publicación:

2012

Keywords:

  • Quaternions
  • Kaluza-Klein
  • Finsler Geometry
  • Grand unification
  • Gravity

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Geometría
  • Física

Áreas temáticas:

  • Física
  • Astronomía y ciencias afines
  • Matemáticas

Contribuidores: