RELATIONSHIP ANALYSIS BETWEEN TWO DIFFERENT METHODS OF SURFACE FRACTAL DIMENSION IN METAL-CERAMIC COATINGS SPUTTERED BY RF-MAGNETRON


Abstract:

Existing topographical microstructure analyses obtain information based on surface properties of the analyzed material, such as scanning electron microscopy (SEM) and atomic force microscopy (AFM). However, these methods cannot provide quantitative topographical data, such as fractal analysis. In this paper, we present the relationship between two different methods in the obtaining the fractal dimension using electrochemical impedance spectroscopy (EIS) and AFM image analysis based on statistics and behavior of roughness and porosity properties of four other coating systems obtained by RF-magnetron sputtering. Our results demonstrated that the n=40 bilayer system is the best since it presented a lower porosity-roughness percentage and means. At least one of the fractal dimension values has a nonnormal distribution. However, the hypothesis testing showed no significant difference between the medians of both method's fractal dimension values. The correlation coefficient showed a strong relationship between the roughness and porosity properties with a typical regular distribution pattern. According to the statistical data results, researchers can use both the methods due to their outstanding data precision.

Año de publicación:

2022

Keywords:

  • nonparametric statistic
  • fractal dimension
  • Roughness
  • Porosity
  • Sputtered coating

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas:

  • Física aplicada
  • Ingeniería y operaciones afines