Rarita-Schwinger type operators on spheres and real projective space


Abstract:

In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.

Año de publicación:

2012

Keywords:

  • Spherical Rarita-Schwinger type operators
  • Iwasawa decomposition
  • Cayley transformation
  • Almansi-Fischer decomposition
  • Real projective space

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Modelo matemático

Áreas temáticas:

  • Matemáticas
  • Análisis
  • Física