Rarita-Schwinger type operators on spheres and real projective space
Abstract:
In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.
Año de publicación:
2012
Keywords:
- Spherical Rarita-Schwinger type operators
- Iwasawa decomposition
- Cayley transformation
- Almansi-Fischer decomposition
- Real projective space
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Modelo matemático
Áreas temáticas:
- Matemáticas
- Análisis
- Física