Real-time control architecture for a multi UAV test bed


Abstract:

The purpose of this thesis is to develop a control architecture running at real-time for a multi unmanned aerial vehicle test bed formed by three AscTec Hummingbird mini quadrotors. The reliable and reconfigurable architecture presented here has a FPGA-based embedded system as main controller. Under the implemented control system, different practical applications have been performed in the MARHES Lab at the University of New Mexico as part of its research in cooperative control of mobile aerial agents. This thesis also covers the quadrotor modeling, the design of a position controller, the real-time architecture implementation and the experimental flight tests. A hybrid approach combining first-principles with system identification techniques is used for modeling the quadrotor due to the lack of information around the structure of the onboard controller designed by AscTec. The complete quadrotor model structure is formed by a black-box subsystem and a point-mass submodel. Experimental data have been gathered for system identification and black-box submodel validation purposes; while the point-mass submodel is found applying rigid-body dynamics. Using the dynamical model, a position control block based in lead-lag and PI compensators is developed and simulated. Improvements in trajectory tracking performance are achieved estimating the linear velocity of the aerial robot and incorporating velocity lead-lag compensators to the control approach. The velocity of the aerial robot is computed by numerical differentiation of position data. Simulation results to a variety of input signals of the control block in cascade with the complete …

Año de publicación:

2013

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Sistema de control
    • Robótica

    Áreas temáticas:

    • Ciencias de la computación

    Contribuidores: