Real-time hand gesture recognition based on electromyographic signals and artificial neural networks


Abstract:

In this paper, we propose a hand gesture recognition model based on superficial electromyographic signals. The model responds in approximately 29.38 ms (real time) with a recognition accuracy of 90.7%. We apply a sliding window approach using a main window and a sub-window. The sub-window is used to observe a segment of the signal seen through the main window. The model is composed of five blocks: data acquisition, preprocessing, feature extraction, classification and postprocessing. For data acquisition, we use the Myo Armband to measure the electromyographic signals. For preprocessing, we rectify, filter, and detect the muscle activity. For feature extraction, we generate a feature vector using the preprocessed signals values and the results from a bag of functions. For classification, we use a feedforward neural network to label every sub-window observation. Finally, for postprocessing we apply a simple majority voting to label the main window observation.

Año de publicación:

2018

Keywords:

  • Electromyography
  • Machine learning
  • Signal processing
  • Hand gesture recognition
  • artificial neural networks

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Red neuronal artificial
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación
  • Física aplicada
  • Métodos informáticos especiales