Recent results on hyperbolicity on unitary operators on graphs
Abstract:
For a geodesic metric space X and for x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X):= sup{δ(T ): T is a geodesic triangle in X }. In this paper, we collect previous results and prove new theorems on the hyperbolic constant of some important unitary operators on graphs.
Año de publicación:
2023
Keywords:
- geodesics
- central graph
- hyperbolicity constant
- hyperbolic space
- Gromov hyperbolicity
- hyperbolic graph
Fuente:
scopus
Tipo de documento:
Review
Estado:
Acceso abierto
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación