Recommender system based on latent topics
Abstract:
Collaborative filtering is one of the most used techniques in recommender systems. The goal of this paper is to propose a new method that uses latent topics to model the items to be recommended. In this way, the ability to establish a similarity between these elements is incorporated, improving the performance of the recommendation made. The performance of the proposed method has been measured in two very different contexts, yielding satisfactory results. Finally, the conclusions and some future lines of work are included.
Año de publicación:
2018
Keywords:
- COLLABORATIVE FILTERING
- Latent topic modeling
- recommender systems
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Funcionamiento de bibliotecas y archivos