Recommender systems clustering using Bayesian non negative matrix factorization


Abstract:

Recommender Systems present a high-level of sparsity in their ratings matrices. The collaborative filtering sparse data makes it difficult to: 1) compare elements using memory-based solutions; 2) obtain precise models using model-based solutions; 3) get accurate pbkp_redictions; and 4) properly cluster elements. We propose the use of a Bayesian non-negative matrix factorization (BNMF) method to improve the current clustering results in the collaborative filtering area. We also provide an original pre-clustering algorithm adapted to the proposed probabilistic method. Results obtained using several open data sets show: 1) a conclusive clustering quality improvement when BNMF is used, compared with the classical matrix factorization or to the improved KMeans results; 2) a higher pbkp_redictions accuracy using matrix factorization-based methods than using improved KMeans; and 3) better BNMF execution times compared with those of the classic matrix factorization, and an additional improvement when using the proposed pre-clustering algorithm.

Año de publicación:

2017

Keywords:

  • Hard clustering
  • recommender systems
  • COLLABORATIVE FILTERING
  • Bayesian NMF
  • matrix factorization
  • Sparse data
  • Pre-clustering

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Funcionamiento de bibliotecas y archivos