Recovery of neodymium (III) from aqueous phase by chitosan-manganese-ferrite magnetic beads
Abstract:
Neodymium is a key rare-earth element applied to modern devices. The purpose of this study is the development of a hybrid biomaterial based on chitosan (CS) and manganese ferrite (MF) for the recovery of Nd(III) ions from the aqueous phase. The preparation of the beads was performed in two stages; first, MF particles were obtained by the assessment of three temperatures during the co-precipitation synthesis, and the best nano-MF crystallites were incorporated into CS to obtain the hybrid composite material (CS-MF). The materials were characterized by FTIR, XRD, magnetization measurements, and SEM-EDX. The adsorption experiments included pH study, equilibrium study, kinetics study, and sorption–desorption reusability tests. The results showed that for MF synthesis, 60 °C is an appropriate temperature to obtain MF crystals of ~30 nm with suitable magnetic properties. The final magnetic CS-MF beads perform maximum adsorption at pH 4 with a maximum adsorption capacity of 44.29 mg/g. Moreover, the material can be used for up to four adsorption–desorption cycles. The incorporation of MF improves the sorption capacity of the neat chitosan. Additionally, the magnetic properties enable its easy separation from aqueous solutions for further use. The material obtained represents an enhanced magnetic hybrid adsorbent that can be applied to recover Nd(III) from aqueous solutions.
Año de publicación:
2020
Keywords:
- Adsorption
- Spinel ferrite
- MnFe O 2 4
- Magnetic
- Rare earth
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Ciencia de materiales
- Biomateriales
Áreas temáticas:
- Química física
- Química analítica
- Tecnología de otros productos orgánicos