Reinforcement Learning-Based Supervisor System Proposal for Fault-Tolerant Control of Direct Fired Heater


Abstract:

This work proposes a reinforcement learning-based supervisor system that incorporates automatic fault detection and fault-tolerant control in a fired heater plant, furnace, used to raise the temperature of crude oil for post-processing purposes. The faults considered are associated with the plant's operating conditions, including the temperature sensor. The supervisor system contemplates supervised-trained neural networks to build a fault detector and an estimator of the controlled variable, a virtual sensor, and a reinforcement-trained neural network for the fault-tolerant controller; specifically, the Monte Carlo algorithm is implemented. Computational simulations illustrate the supervisor system's functionalities, and a discussion of its physical implementation is presented.

Año de publicación:

2022

Keywords:

  • Fault-tolerant system
  • Supervisory system
  • reinforcement learning
  • Neural network controller
  • Direct fire heater
  • Fault Detection
  • Monte Carlo tree search algorithm

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema de control
  • Inteligencia artificial

Áreas temáticas:

  • Métodos informáticos especiales
  • Ingeniería y operaciones afines
  • Otras ramas de la ingeniería