Reinforcement learning-based tuning algorithm applied to fuzzy identification
Abstract:
In on-line applications, reinforcement learning based algorithms allow to take into account the environment information in order to propose an action policy for the overall optimization objectives. In this work, it is presented a learning algorithm based on reinforcement learning and temporal differences allowing the on-line parameters adjustment for identification tasks. As a consequence, the reinforcement signal is generically defined in order to minimize the temporal difference. © Springer-Verlag Berlin Heidelberg 2006.
Año de publicación:
2006
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Inteligencia artificial
- Algoritmo
Áreas temáticas:
- Métodos informáticos especiales