Relative asymptotic equivalence of dynamic equations on time scales


Abstract:

This paper aims to study the relative equivalence of the solutions of the following dynamic equations yΔ(t) = A(t) y(t) and xΔ(t) = A(t) x(t) + f(t, x(t)) in the sense that if y(t) is a given solution of the unperturbed system, we provide sufficient conditions to prove that there exists a family of solutions x(t) for the perturbed system such that ∥ y(t) − x(t) ∥ = o(∥ y(t) ∥) , as t→ ∞ , and conversely, given a solution x(t) of the perturbed system, we give sufficient conditions for the existence of a family of solutions y(t) for the unperturbed system, and such that ∥ y(t) − x(t) ∥ = o(∥ x(t) ∥) , as t→ ∞ ; and in doing so, we have to extend Rodrigues inequality, the Lyapunov exponents, and the polynomial exponential trichotomy on time scales.

Año de publicación:

2022

Keywords:

  • Contraction mapping theorem
  • Dynamic equations on time scales
  • Lyapunov exponent
  • Polynomial exponential trichotomy
  • Rodrigues inequality
  • Relative asymptotic equivalence

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Sistema dinámico
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis