Residential micro-hub load model using neural network
Abstract:
This paper presents the modeling of a residential micro-hub load based on real measurements and simulation data obtained using the Energy Hub Management System (EHMS) model of a residential load. A neural network (NN) is used to estimate the load model as a function of time, temperature, peak demand, and energy price. Different NN training approaches are compared to determine the best function to be used, based on the available data. Also, the number of hidden layer neurons are varied to obtain the best fit for the NN model. The results show that the proposed NN model is able to properly represent the behavior of an actual residential micro-hub.
Año de publicación:
2015
Keywords:
- Demand Response
- home energy management system
- residential energy hubs
- smart grids
- Neural networks
- Optimization
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Red neuronal artificial
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Física aplicada
- Ciencias de la computación